文章目录
  1. 1. 6、适配器模式(Adapter)
  2. 2. 7、装饰模式(Decorator)
  3. 3. 9、外观模式(Facade)
  4. 4. 10、桥接模式(Bridge)
  5. 5. 11、组合模式(Composite)
  6. 6. 12、享元模式(Flyweight)

摘自:http://blog.csdn.net/zhangerqing/article/details/8239539
我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图:

6、适配器模式(Adapter)

适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:

核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:

1 public class Source {
2
3 public void method1() {
4 System.out.println("this is original method!");
5 }
6 }

1 public interface Targetable {
2
3 /* 与原类中的方法相同 */
4 public void method1();
5
6 /* 新类的方法 */
7 public void method2();
8 }

1 public class Adapterextends Source implements Targetable {
2
3 @Override
4 public void method2() {
5 System.out.println("this is the targetable method!");
6 }
7 }
Adapter类继承Source类,实现Targetable接口,下面是测试类:

1 public class AdapterTest {
2
3 public staticvoid main(String[] args) {
4 Targetable target = new Adapter();
5 target.method1();
6 target.method2();
7 }
8 }
输出:
this is original method!
this is the targetable method!
这样Targetable接口的实现类就具有了Source类的功能。
对象的适配器模式
基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:

只需要修改Adapter类的源码即可:

1 public class Wrapperimplements Targetable {
2
3 private Source source;
4
5 public Wrapper(Source source){
6 super();
7 this.source = source;
8 }
9 @Override
10 public void method2() {
11 System.out.println("this is the targetable method!");
12 }
13
14 @Override
15 public void method1() {
16 source.method1();
17 }
18 }
测试类:

1 public class AdapterTest {
2
3 public staticvoid main(String[] args) {
4 Source source = new Source();
5 Targetable target = new Wrapper(source);
6 target.method1();
7 target.method2();
8 }
9 }
输出与第一种一样,只是适配的方法不同而已。
第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:

这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:

1 public interface Sourceable {
2
3 public void method1();
4 public void method2();
5 }
抽象类Wrapper2:

1 public abstractclass Wrapper2 implements Sourceable{
2
3 public void method1(){}
4 public void method2(){}
5 }

1 public class SourceSub1extends Wrapper2 {
2 public void method1(){
3 System.out.println("the sourceable interface's first Sub1!");
4 }
5 }

1 public class SourceSub2extends Wrapper2 {
2 public void method2(){
3 System.out.println("the sourceable interface's second Sub2!");
4 }
5 }

1 public class WrapperTest {
2
3 public staticvoid main(String[] args) {
4 Sourceable source1 = new SourceSub1();
5 Sourceable source2 = new SourceSub2();
6
7 source1.method1();
8 source1.method2();
9 source2.method1();
10 source2.method2();
11 }
12 }
测试输出:
the sourceable interface’s first Sub1!
the sourceable interface’s second Sub2!
达到了我们的效果!
讲了这么多,总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

7、装饰模式(Decorator)

顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:

Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

1 public interface Sourceable {
2 public void method();
3 }

1 public class Sourceimplements Sourceable {
2
3 @Override
4 public void method() {
5 System.out.println("the original method!");
6 }
7 }

1 public class Decoratorimplements Sourceable {
2
3 private Sourceable source;
4
5 public Decorator(Sourceable source){
6 super();
7 this.source = source;
8 }
9 @Override
10 public void method() {
11 System.out.println("before decorator!");
12 source.method();
13 System.out.println("after decorator!");
14 }
15 }
测试类:

1 public class DecoratorTest {
2
3 public staticvoid main(String[] args) {
4 Sourceable source = new Source();
5 Sourceable obj = new Decorator(source);
6 obj.method();
7 }
8 }
输出:
before decorator!
the original method!
after decorator!
装饰器模式的应用场景:
1、需要扩展一个类的功能。
2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)
缺点:产生过多相似的对象,不易排错!
8、代理模式(Proxy)
其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:

根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:

1 public interface Sourceable {
2 public void method();
3 }

1 public class Sourceimplements Sourceable {
2
3 @Override
4 public void method() {
5 System.out.println("the original method!");
6 }
7 }

1 public class Proxyimplements Sourceable {
2
3 private Source source;
4 public Proxy(){
5 super();
6 this.source = new Source();
7 }
8 @Override
9 public void method() {
10 before();
11 source.method();
12 atfer();
13 }
14 private void atfer() {
15 System.out.println("after proxy!");
16 }
17 private void before() {
18 System.out.println("before proxy!");
19 }
20 }
测试类:

1 public class ProxyTest {
2
3 public staticvoid main(String[] args) {
4 Sourceable source = new Proxy();
5 source.method();
6 }
7
8 }
输出:
before proxy!
the original method!
after proxy!
代理模式的应用场景:
如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:
1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。
2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。
使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

9、外观模式(Facade)

外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)

我们先看下实现类:

1 public class CPU {
2
3 public void startup(){
4 System.out.println("cpu startup!");
5 }
6
7 public void shutdown(){
8 System.out.println("cpu shutdown!");
9 }
10 }

1 public class Memory {
2
3 public void startup(){
4 System.out.println("memory startup!");
5 }
6
7 public void shutdown(){
8 System.out.println("memory shutdown!");
9 }
10 }

1 public class Disk {
2
3 public void startup(){
4 System.out.println("disk startup!");
5 }
6
7 public void shutdown(){
8 System.out.println("disk shutdown!");
9 }
10 }

1 public class Computer {
2 private CPU cpu;
3 private Memory memory;
4 private Disk disk;
5
6 public Computer(){
7 cpu = new CPU();
8 memory = new Memory();
9 disk = new Disk();
10 }
11
12 public void startup(){
13 System.out.println("start the computer!");
14 cpu.startup();
15 memory.startup();
16 disk.startup();
17 System.out.println("start computer finished!");
18 }
19
20 public void shutdown(){
21 System.out.println("begin to close the computer!");
22 cpu.shutdown();
23 memory.shutdown();
24 disk.shutdown();
25 System.out.println("computer closed!");
26 }
27 }
User类如下:

1 public class User {
2
3 public staticvoid main(String[] args) {
4 Computer computer = new Computer();
5 computer.startup();
6 computer.shutdown();
7 }
8 }
输出:
start the computer!
cpu startup!
memory startup!
disk startup!
start computer finished!
begin to close the computer!
cpu shutdown!
memory shutdown!
disk shutdown!
computer closed!
如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!

10、桥接模式(Bridge)

桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:

实现代码:
先定义接口:

1 public interface Sourceable {
2 public void method();
3 }
分别定义两个实现类:

1 public class SourceSub1implements Sourceable {
2
3 @Override
4 public void method() {
5 System.out.println("this is the first sub!");
6 }
7 }

1 public class SourceSub2implements Sourceable {
2
3 @Override
4 public void method() {
5 System.out.println("this is the second sub!");
6 }
7 }
定义一个桥,持有Sourceable的一个实例:

1 public abstractclass Bridge {
2 private Sourceable source;
3
4 public void method(){
5 source.method();
6 }
7
8 public Sourceable getSource() {
9 return source;
10 }
11
12 public void setSource(Sourceable source) {
13 this.source = source;
14 }
15 }

1 public class MyBridgeextends Bridge {
2 public void method(){
3 getSource().method();
4 }
5 }
测试类:

1 public class BridgeTest {
2
3 public staticvoid main(String[] args) {
4
5 Bridge bridge = new MyBridge();
6
7 /*调用第一个对象*/
8 Sourceable source1 = new SourceSub1();
9 bridge.setSource(source1);
10 bridge.method();
11
12 /*调用第二个对象*/
13 Sourceable source2 = new SourceSub2();
14 bridge.setSource(source2);
15 bridge.method();
16 }
17 }
output:
this is the first sub!
this is the second sub!
这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

11、组合模式(Composite)

组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:

直接来看代码:
1 public class TreeNode {
2
3 private String name;
4 private TreeNode parent;
5 private Vector<TreeNode> children =new Vector<TreeNode>();
6
7 public TreeNode(String name){
8 this.name = name;
9 }
10
11 public String getName() {
12 return name;
13 }
14
15 public void setName(String name) {
16 this.name = name;
17 }
18
19 public TreeNode getParent() {
20 return parent;
21 }
22
23 public void setParent(TreeNode parent) {
24 this.parent = parent;
25 }
26
27 //添加孩子节点
28 public void add(TreeNode node){
29 children.add(node);
30 }
31
32 //删除孩子节点
33 public void remove(TreeNode node){
34 children.remove(node);
35 }
36
37 //取得孩子节点
38 public Enumeration<TreeNode> getChildren(){
39 return children.elements();
40 }
41 }

1 public class Tree {
2
3 TreeNode root = null;
4
5 public Tree(String name) {
6 root = new TreeNode(name);
7 }
8
9 public staticvoid main(String[] args) {
10 Tree tree = new Tree("A");
11 TreeNode nodeB = new TreeNode("B");
12 TreeNode nodeC = new TreeNode("C");
13
14 nodeB.add(nodeC);
15 tree.root.add(nodeB);
16 System.out.println("build the tree finished!");
17 }
18 }
使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

12、享元模式(Flyweight)

享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。
看个例子:

看下数据库连接池的代码:
1 public class ConnectionPool {
2
3 private Vector<Connection> pool;
4
5 /*公有属性*/
6 private String url = "jdbc:mysql://localhost:3306/test";
7 private String username ="root";
8 private String password = "root";
9 private String driverClassName ="com.mysql.jdbc.Driver";
10
11 private int poolSize =100;
12 private static ConnectionPool instance =null;
13 Connection conn = null;
14
15 /*构造方法,做一些初始化工作*/
16 private ConnectionPool() {
17 pool = new Vector<Connection>(poolSize);
18
19 for (int i =0; i < poolSize; i++) {
20 try {
21 Class.forName(driverClassName);
22 conn = DriverManager.getConnection(url, username, password);
23 pool.add(conn);
24 } catch (ClassNotFoundException e) {
25 e.printStackTrace();
26 } catch (SQLException e) {
27 e.printStackTrace();
28 }
29 }
30 }
31
32 /* 返回连接到连接池 */
33 public synchronizedvoid release() {
34 pool.add(conn);
35 }
36
37 /* 返回连接池中的一个数据库连接 */
38 public synchronized Connection getConnection() {
39 if (pool.size() >0) {
40 Connection conn = pool.get(0);
41 pool.remove(conn);
42 return conn;
43 } else {
44 return null;
45 }
46 }
47 }
通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!

文章目录
  1. 1. 6、适配器模式(Adapter)
  2. 2. 7、装饰模式(Decorator)
  3. 3. 9、外观模式(Facade)
  4. 4. 10、桥接模式(Bridge)
  5. 5. 11、组合模式(Composite)
  6. 6. 12、享元模式(Flyweight)